ISSN 1600-5368

N-(4-Methylpyridin-2-yl)-5*H*-dibenzo-[*d*,*f*][1,3]diazepine-6-carboxamide toluene hemisolvate

Maciej Hodorowicz,* Katarzyna Stadnicka, Bartosz Trzewik and Barbara Zaleska

Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland Correspondence e-mail: hodorowm@chemia.uj.edu.pl

Received 28 August 2007; accepted 31 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.052; wR factor = 0.148; data-to-parameter ratio = 30.0.

The title compound, $C_{20}H_{16}N_4O \cdot 0.5C_7H_8$, crystallizes with half a toluene molecule (disordered about a centre of inversion); the seven-membered diazepine ring adopts a twist-boat conformation. The structure features two intramolecular (N-H···O and N-H···N) and one intermolecular hydrogen bond. Additional intermolecular π - π interactions (3.556– 3.651 Å) give rise to a three-dimensional network in the crystal structure.

Related literature

For literature on the medicinal and psychotherapeutic uses of similar compounds, see Evans *et al.* (1988); Sternbach (1978). For comparative bond distances, see Allen *et al.* (1987).

Experimental

Crystal data $C_{20}H_{16}N_4O \cdot 0.5C_7H_8$ $M_r = 374.44$ Triclinic, $P\overline{1}$

$\alpha = 77.050 \ (1)^{\circ}$
$\beta = 87.529 \ (1)^{\circ}$
$\gamma = 70.191 \ (1)^{\circ}$
$V = 963.08 (4) \text{ Å}^3$
Z = 2

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*DENZO* and *SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.977, T_{max} = 0.988$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.052 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.148 & \text{independent and constrained} \\ S &= 1.02 & \text{refinement} \\ 8631 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.18 \text{ e } \text{ Å}^{-3} \\ 288 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.18 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3\cdotsO1$ $N3-H3\cdotsO1^{i}$ $N2-H2\cdotsN4$	0.88 (1)	2.22 (1)	2.677 (1)	112 (1)
	0.88 (1)	2.31 (1)	3.108 (1)	151 (1)
	0.87 (1)	2.19 (1)	2.644 (1)	112 (1)

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Joint X-ray Laboratory, Faculty of Chemistry, and SLAFiBS, Jagiellonian University, for making available the Nonius KappaCCD diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2316).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Evans, B. E. et al. (1988). J. Med. Chem. 31, 2235-2246.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sternbach, L. H. (1978). Prog. Drug Res. 22, 229-266.

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.29 \times 0.21 \times 0.15$ mm

17061 measured reflections

8631 independent reflections

5192 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.0595$

Acta Cryst. (2007). E63, o4115 [doi:10.1107/S1600536807042687]

N-(4-Methylpyridin-2-yl)-5H-dibenzo[d,f][1,3]diazepine-6-carboxamide toluene hemisolvate

M. Hodorowicz, K. Stadnicka, B. Trzewik and B. Zaleska

Comment

Benzodiazepines are one of the most important substances in medicinal chemistry, representing the prototypical 'privileged structure' (Evans et al. 1988). Compounds based on the diazepine skeleton are psychotherapeutic agents widely used for the treatment of anxiety and neurosis (Sternbach, 1978). The crystal structure analysis of N-(4-methylpyridin-2-yl)-5Hdibenzo [d, f] [1,3] diazepine-6-carboxamide was performed to find out the influence of methyl substituent on molecular geometry and packing properties. The molecular structure of the title compound is shown in Fig. 1. The symmetrically independent part of the unit cell is composed of title compound molecule and disordered toluene molecule. The core of the diazepine molecule is composed of a seven-membered ring to which a pyridin-2-ylamino carbonyl substituent is attached and two benzene rings are fused. The puckering parameters of the seven-membered ring (atoms in N3, C2,...,C31 sequence): $q^2 = 0.5752$, $q^3 = 0.0819$, QT = 0.5810, $\varphi^2 = -6.33$, $\varphi^3 = 10.46$, $\theta^2 = 81.89^\circ$, indicate a twisted-boat conformation with a pseudo-mirror plane (Cs) through the N3 atom and the centre of C41-C46 bond. From the chemical point of view there is also a pseudo 2-fold axis (C₂) bisecting the diazepine ring through C2 and the center of C36–C46 bond. The bond lengths and valence angles are typical and comparable with the values reported in the literature (Allen et al. 1987). Two N atoms are involved in hydrogen bonds: two intra- and one intermolecular (Table 1). The intermolecular N3—H3…O1 [-x, 1-y, 1-y]z interaction is relatively weak due to simultaneous donor participation in intramolecular interaction (bifurcated hydrogen bond). In addition, there are two types of π - π interactions, which assist in the stabilization of the three-dimensional-packing. The benzene ring C31...C36 is strictly parallel to another one in position [1 - x, 1 - y, 1 - z], with interplanar spacing of 3.556 Å, the ring-centroid separation of 3.883 Å and with ring offset of 1.560 Å. The pyridine ring is nearly parallel to another benzene ring C41···C46 of the molecule at [1 - x, -y, 1 - z]. The interplanar spacing is 3.651 Å, the corresponding ring-centroid separation is 3.790 Å, resulting in the offset of 1.017 Å. The π - π interaction are illustrated in Fig. 2. A s it can be seen in Fig. 2, the solvent accessible cavities at 0, 1/2, 1 are filled with disordered toluene molecules which stabilized three-dimensional structure (total potential solvent area of 195.7 Å³ makes 20.3% of unit cell volume).

Experimental

Recrystallization from toluene afforded crystals suitable for X-ray measurements.

Refinement

H atoms bonded to N atoms were located in a difference Fourier map and refined with distance restraints of N—H = 0.87 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. All other H atom positions were also observed in difference Fourier map. Nevertheless, in the refinement procedure the hydrogen atoms were positioned geometrically and refined using a riding model (including free rotation about the C—C bond), with C—H = 0.95–0.99 Å (C—H = 0.97 Å for CH₂ groups, 0.96 Å for CH₃ groups, and 0.93 Å for aromatic CH) and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms. Refinement was performed with data set combined of two independent measurements and with BASF parameter as the scale factor for second data set (BASF parameter converged to 0.94477)

Figures

Fig. 1. *ORTEP-3* (Farrugia, 1997) drawing of the title compound with labels. Displacement ellipsoids of non-H atoms drawn at 30% probability level.

Fig. 2. *ORTEP-3* (Farrugia, 1997) drawing of the crystal packing viewed along [010] with marked π - π interactions (dashed bonds). Hydrogen atoms are omitted.

N-(4-Methylpyridin-2-yl)-5*H*-dibenzo[d,f][1,3]diazepine-6- carboxamide toluene hemisolvate

Crystal data	
$C_{20}H_{16}N_4O{\cdot}0.5C_7H_8$	Z = 2
$M_r = 374.44$	$F_{000} = 394$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.291 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 8.9323 (2) Å	Cell parameters from 2469 reflections
b = 9.6863 (2) Å	$\theta = 1.0-27.5^{\circ}$
c = 12.1478 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 77.050 \ (1)^{\circ}$	T = 293 (2) K
$\beta = 87.529 \ (1)^{\circ}$	Prism, orange
$\gamma = 70.191 \ (1)^{\circ}$	$0.29 \times 0.21 \times 0.15 \text{ mm}$
$V = 963.08 (4) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	8631 independent reflections
Radiation source: fine-focus sealed tube	5192 reflections with $I > 2\sigma(I)$
Monochromator: horizontally mounted graphite crystal	$R_{\rm int} = 0.0000$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.4^{\circ}$
ϕ and ω scans to fill asymmetric unit	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997)	$k = -12 \rightarrow 12$
$T_{\min} = 0.977, \ T_{\max} = 0.988$	$l = 0 \rightarrow 15$
17061 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0656P)^2 + 0.0957P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.148$	$(\Delta/\sigma)_{\rm max} = 0.01$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
8631 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
288 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

methods Extinction coefficient: 0.014 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement with redundant (*i.e.* not merged/unique) data set: data set combined of two independent measurements; refinement with BASF parameter as the scale factor for second data set. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.17801 (13)	0.23113 (12)	0.51837 (9)	0.0458 (3)	
O1	0.07918 (10)	0.32376 (9)	0.56173 (8)	0.0611 (2)	
C2	0.27718 (12)	0.28173 (12)	0.42283 (9)	0.0430 (3)	
N3	0.23275 (11)	0.43460 (10)	0.38922 (9)	0.0505 (3)	
Н3	0.1546 (16)	0.4821 (14)	0.4286 (10)	0.058 (4)*	
C31	0.34450 (12)	0.51109 (11)	0.36175 (9)	0.0435 (3)	
C32	0.32397 (14)	0.63436 (12)	0.40814 (10)	0.0534 (3)	
H32	0.2384	0.6645	0.4540	0.064*	
C33	0.42946 (16)	0.71276 (13)	0.38688 (11)	0.0605 (3)	
H33	0.4140	0.7963	0.4174	0.073*	
C34	0.55721 (15)	0.66709 (14)	0.32055 (12)	0.0603 (3)	
H34	0.6297	0.7184	0.3071	0.072*	
C35	0.57746 (14)	0.54485 (13)	0.27409 (10)	0.0521 (3)	

H35 C36 C46	0.6645 0.47134 (12)	0.5149 0.46415 (11)	0.2294 0.29185 (9)	0.062* 0.0427 (2)	
C36 C46	0.47134 (12)	0.46415 (11)	0.29185 (9)	0.0427 (2)	
C46					
	0.49668 (12)	0.33809 (12)	0.23420 (9)	0.0430 (2)	
C45	0.56872 (14)	0.34457 (14)	0.13001 (10)	0.0560 (3)	
H45	0.5935	0.4302	0.0970	0.067*	
C44	0.60463 (17)	0.22908 (16)	0.07395 (12)	0.0687 (4)	
H44	0.6513	0.2380	0.0040	0.082*	
C43	0.57127 (17)	0.10084 (17)	0.12164 (12)	0.0702 (4)	
H43	0.5972	0.0214	0.0852	0.084*	
C42	0.49880 (14)	0.09106 (14)	0.22422 (11)	0.0565 (3)	
H42	0.4765	0.0039	0.2565	0.068*	
C41	0.45811 (12)	0.20788 (12)	0.28090 (9)	0.0428 (2)	
N4	0.38063 (10)	0.17891 (10)	0.38303 (8)	0.0450 (2)	
N2	0.20866 (12)	0.08255 (11)	0.54501 (9)	0.0513 (3)	
H2	0.2779 (16)	0.0327 (15)	0.5026 (12)	0.069 (4)*	
C21	0.12759 (13)	-0.00035 (12)	0.61882 (9)	0.0458 (3)	
C22	0.03000 (14)	0.05641 (14)	0.70102 (10)	0.0531 (3)	
H22	0.0155	0.1528	0.7103	0.064*	
C23	-0.04599 (15)	-0.03245 (15)	0.76942 (10)	0.0577 (3)	
C24	-0.01902 (16)	-0.17409 (15)	0.75086 (11)	0.0645 (4)	
H24	-0.0679	-0.2374	0.7946	0.077*	
C25	0.08051 (16)	-0.22065 (14)	0.66741 (12)	0.0624 (3)	
H25	0.0970	-0.3166	0.6565	0.075*	
N26	0.15561 (12)	-0.13681 (10)	0.60055 (8)	0.0539 (3)	
C27	-0.1531 (2)	0.0259 (2)	0.86000 (13)	0.0853 (5)	
H27A	-0.1950	-0.0498	0.8997	0.102*	
H27B	-0.2393	0.1146	0.8260	0.102*	
H27C	-0.0933	0.0502	0.9121	0.102*	
C50	0.0601 (10)	0.3448 (10)	-0.1225 (8)	0.141 (4)	0.50
H50A	0.0559	0.4006	-0.1991	0.169*	0.50
H50B	-0.0135	0.2908	-0.1153	0.169*	0.50
H50C	0.1659	0.2749	-0.1032	0.169*	0.50
C51	0.0177 (5)	0.4482 (4)	-0.0469 (2)	0.0800 (9)	0.50
C52	0.1356 (3)	0.4569 (3)	0.0196 (3)	0.0699 (17)	0.50
H52	0.2411	0.3975	0.0150	0.084*	0.50
C53	0.0958 (5)	0.5544 (4)	0.0928 (2)	0.0986 (13)	0.50
Н53	0.1747	0.5603	0.1373	0.118*	0.50
C54	-0.0619 (6)	0.6433 (4)	0.0996 (3)	0.118 (4)	0.50
H54	-0.0886	0.7085	0.1486	0.142*	0.50
C55	-0.1799 (3)	0.6345 (4)	0.0332 (4)	0.1057 (14)	0.50
Н55	-0.2854	0.6940	0.0377	0.127*	0.50
C56	-0.1400 (4)	0.5370 (5)	-0.0401 (3)	0.099 (3)	0.50
H56	-0.2189	0.5312	-0.0845	0.119*	0.50

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0459 (6)	0.0426 (6)	0.0505 (6)	-0.0172 (5)	0.0101 (5)	-0.0112 (5)

O1	0.0620 (5)	0.0468 (5)	0.0748 (6)	-0.0191 (4)	0.0306 (5)	-0.0182 (4)
C2	0.0421 (5)	0.0398 (6)	0.0486 (6)	-0.0160 (4)	0.0072 (5)	-0.0103 (5)
N3	0.0454 (5)	0.0385 (5)	0.0656 (6)	-0.0132 (4)	0.0204 (5)	-0.0124 (4)
C31	0.0451 (6)	0.0366 (5)	0.0464 (6)	-0.0134 (4)	0.0077 (5)	-0.0062 (4)
C32	0.0592 (7)	0.0416 (6)	0.0570 (7)	-0.0142 (5)	0.0147 (6)	-0.0128 (5)
C33	0.0734 (8)	0.0438 (7)	0.0698 (8)	-0.0238 (6)	0.0090 (7)	-0.0187 (6)
C34	0.0628 (7)	0.0495 (7)	0.0760 (9)	-0.0293 (6)	0.0082 (7)	-0.0139 (6)
C35	0.0500 (6)	0.0488 (7)	0.0588 (7)	-0.0208 (5)	0.0128 (5)	-0.0101 (5)
C36	0.0435 (5)	0.0381 (6)	0.0446 (6)	-0.0137 (4)	0.0060 (5)	-0.0063 (4)
C46	0.0387 (5)	0.0444 (6)	0.0449 (6)	-0.0130 (4)	0.0064 (5)	-0.0104 (5)
C45	0.0584 (7)	0.0615 (7)	0.0519 (7)	-0.0253 (6)	0.0156 (6)	-0.0150 (6)
C44	0.0777 (9)	0.0797 (10)	0.0563 (8)	-0.0304 (7)	0.0272 (7)	-0.0292 (7)
C43	0.0783 (9)	0.0711 (9)	0.0721 (9)	-0.0259 (7)	0.0227 (8)	-0.0404 (7)
C42	0.0594 (7)	0.0505 (7)	0.0644 (8)	-0.0199 (6)	0.0138 (6)	-0.0221 (6)
C41	0.0389 (5)	0.0421 (6)	0.0459 (6)	-0.0114 (4)	0.0058 (5)	-0.0112 (4)
N4	0.0454 (5)	0.0399 (5)	0.0496 (5)	-0.0148 (4)	0.0107 (4)	-0.0110 (4)
N2	0.0558 (6)	0.0414 (5)	0.0557 (6)	-0.0171 (4)	0.0203 (5)	-0.0110 (4)
C21	0.0452 (6)	0.0430 (6)	0.0466 (6)	-0.0160 (5)	0.0030 (5)	-0.0033 (5)
C22	0.0604 (7)	0.0534 (7)	0.0495 (6)	-0.0248 (6)	0.0104 (6)	-0.0121 (5)
C23	0.0575 (7)	0.0733 (9)	0.0446 (6)	-0.0305 (6)	0.0065 (6)	-0.0053 (6)
C24	0.0656 (8)	0.0658 (9)	0.0628 (8)	-0.0354 (7)	0.0029 (7)	0.0049 (6)
C25	0.0651 (8)	0.0464 (7)	0.0745 (9)	-0.0238 (6)	0.0006 (7)	-0.0026 (6)
N26	0.0550 (6)	0.0419 (5)	0.0615 (6)	-0.0163 (4)	0.0049 (5)	-0.0058 (4)
C27	0.0911 (11)	0.1162 (13)	0.0609 (9)	-0.0534 (10)	0.0294 (8)	-0.0204 (9)
C50	0.189 (11)	0.164 (8)	0.103 (4)	-0.106 (7)	0.024 (5)	-0.027 (5)
C51	0.104 (3)	0.076 (2)	0.0657 (19)	-0.055 (2)	0.010 (2)	0.0105 (16)
C52	0.049 (3)	0.080 (4)	0.076 (2)	-0.037 (3)	-0.010 (2)	0.018 (2)
C53	0.100 (3)	0.114 (4)	0.089 (3)	-0.062 (3)	-0.022 (2)	0.008 (2)
C54	0.157 (9)	0.081 (4)	0.114 (6)	-0.049 (5)	0.037 (5)	-0.010 (4)
C55	0.081 (3)	0.105 (3)	0.117 (4)	-0.037 (2)	0.014 (3)	0.011 (3)
C56	0.096 (6)	0.114 (7)	0.084 (3)	-0.054 (5)	-0.007 (3)	0.015 (3)

Geometric parameters (Å, °)

C1—O1	1.223 (1)	N2—H2	0.87 (1)
C1—N2	1.335 (1)	C21—N26	1.327 (1)
C1—C2	1.524 (2)	C21—C22	1.380 (2)
C2—N4	1.278 (1)	C22—C23	1.385 (2)
C2—N3	1.364 (1)	C22—H22	0.9300
N3—C31	1.421 (1)	C23—C24	1.379 (2)
N3—H3	0.88 (1)	C23—C27	1.506 (2)
C31—C32	1.386 (2)	C24—C25	1.370 (2)
C31—C36	1.397 (1)	C24—H24	0.9300
C32—C33	1.381 (2)	C25—N26	1.340 (2)
С32—Н32	0.9300	С25—Н25	0.9300
C33—C34	1.373 (2)	С27—Н27А	0.9600
С33—Н33	0.9300	С27—Н27В	0.9600
C34—C35	1.378 (2)	С27—Н27С	0.9600
C34—H34	0.9300	C50—C51	1.455 (8)

C35—C36	1.402 (2)	C50—H50A	0.9600
С35—Н35	0.9300	C50—H50B	0.9600
C36—C46	1.488 (2)	С50—Н50С	0.9600
C46—C45	1.393 (2)	C51—C52	1.3900
C46—C41	1.410 (2)	C51—C56	1.3900
C45—C44	1.377 (2)	C52—C53	1.3900
C45—H45	0.9300	С52—Н52	0.9300
C44—C43	1.372 (2)	C53—C54	1.3900
C44—H44	0.9300	С53—Н53	0.9300
C43—C42	1.378 (2)	C54—C55	1.3900
C43—H43	0.9300	С54—Н54	0.9300
C42—C41	1.391 (1)	C55—C56	1.3900
C42—H42	0.9300	С55—Н55	0.9300
C41—N4	1.414 (1)	С56—Н56	0.9300
N2—C21	1.410(1)		
O1—C1—N2	126.0(1)	C2—N4—C41	123.5(1)
O1—C1—C2	120.4 (1)	C1—N2—C21	128.8 (1)
N2—C1—C2	113.7 (1)	C1—N2—H2	114.6 (9)
N4—C2—N3	130.1 (1)	C21—N2—H2	115.8 (9)
N4—C2—C1	117.1 (1)	N26—C21—C22	124.3 (1)
N3—C2—C1	112.7 (1)	N26—C21—N2	112.9 (1)
C2—N3—C31	122.7 (1)	C22—C21—N2	122.8 (1)
C2—N3—H3	113.0 (8)	C21—C22—C23	118.9 (1)
C31—N3—H3	111.5 (8)	C21—C22—H22	120.5
C32—C31—C36	120.8 (1)	C23—C22—H22	120.5
C32—C31—N3	117.3 (1)	C24—C23—C22	117.4 (1)
C36—C31—N3	121.9 (1)	C24—C23—C27	122.3 (1)
C33—C32—C31	120.6 (1)	C22—C23—C27	120.3 (1)
С33—С32—Н32	119.7	C25—C24—C23	119.4 (1)
С31—С32—Н32	119.7	C25—C24—H24	120.3
C34—C33—C32	119.8 (1)	C23—C24—H24	120.3
С34—С33—Н33	120.1	N26—C25—C24	124.2 (1)
С32—С33—Н33	120.1	N26—C25—H25	117.9
C33—C34—C35	119.6 (1)	C24—C25—H25	117.9
С33—С34—Н34	120.2	C21—N26—C25	115.7 (1)
С35—С34—Н34	120.2	С23—С27—Н27А	109.5
C34—C35—C36	122.3 (1)	С23—С27—Н27В	109.5
С34—С35—Н35	118.9	H27A—C27—H27B	109.5
С36—С35—Н35	118.9	С23—С27—Н27С	109.5
C31—C36—C35	116.8 (1)	H27A—C27—H27C	109.5
C31—C36—C46	124.0 (1)	H27B—C27—H27C	109.5
C35—C36—C46	119.1 (1)	C52—C51—C56	120.0
C45—C46—C41	117.3 (1)	C52—C51—C50	119.7 (5)
C45—C46—C36	118.8 (1)	C56—C51—C50	120.3 (5)
C41—C46—C36	123.9 (1)	C51—C52—C53	120.0
C44—C45—C46	122.5 (1)	С51—С52—Н52	120.0
C44—C45—H45	118.7	С53—С52—Н52	120.0
C46—C45—H45	118.7	C52—C53—C54	120.0
C43—C44—C45	119.8 (1)	С52—С53—Н53	120.0

G42 G44 H44	120.1	Q54 Q52 H52	120.0
C43—C44—H44	120.1	C54—C53—H53	120.0
C45—C44—H44	120.1	055-054-053	120.0
C44—C43—C42	119.2 (1)	С55—С54—Н54	120.0
C44—C43—H43	120.4	С53—С54—Н54	120.0
С42—С43—Н43	120.4	C56—C55—C54	120.0
C43—C42—C41	121.9 (1)	С56—С55—Н55	120.0
C43—C42—H42	119.1	С54—С55—Н55	120.0
C41—C42—H42	119.1	C55—C56—C51	120.0
C42—C41—C46	119.2 (1)	С55—С56—Н56	120.0
C42—C41—N4	113.7 (1)	C51—C56—H56	120.0
C46—C41—N4	127.1 (1)		
O1—C1—C2—N4	178.5 (1)	C45—C46—C41—C42	2.6 (2)
N2-C1-C2-N4	-2.8 (2)	C36—C46—C41—C42	-174.7 (1)
O1-C1-C2-N3	-4.9 (2)	C45—C46—C41—N4	-177.9 (1)
N2-C1-C2-N3	173.7 (1)	C36—C46—C41—N4	4.9 (2)
N4—C2—N3—C31	-44.4 (2)	N3—C2—N4—C41	-9.1 (2)
C1—C2—N3—C31	139.6 (1)	C1—C2—N4—C41	166.7 (1)
C2—N3—C31—C32	-132.8 (1)	C42—C41—N4—C2	-149.2 (1)
C2—N3—C31—C36	46.6 (2)	C46—C41—N4—C2	31.2 (2)
C36—C31—C32—C33	-0.5 (2)	O1-C1-N2-C21	6.7 (2)
N3—C31—C32—C33	178.9 (1)	C2-C1-N2-C21	-171.9(1)
C31—C32—C33—C34	-0.9 (2)	C1—N2—C21—N26	160.4 (1)
C32—C33—C34—C35	1.1 (2)	C1—N2—C21—C22	-19.7 (2)
C33—C34—C35—C36	0.1 (2)	N26-C21-C22-C23	-0.5 (2)
C32—C31—C36—C35	1.7 (2)	N2—C21—C22—C23	179.6 (1)
N3—C31—C36—C35	-177.7 (1)	C21—C22—C23—C24	0.0 (2)
C32—C31—C36—C46	-176.7 (1)	C21—C22—C23—C27	179.9 (1)
N3—C31—C36—C46	3.9 (2)	C22—C23—C24—C25	0.3 (2)
C34—C35—C36—C31	-1.5 (2)	C27—C23—C24—C25	-179.7 (1)
C34—C35—C36—C46	177.0(1)	C23—C24—C25—N26	-0.1 (2)
C31—C36—C46—C45	148.6 (1)	C22-C21-N26-C25	0.7 (2)
C35—C36—C46—C45	-29.8 (2)	N2-C21-N26-C25	-179.4 (1)
C31—C36—C46—C41	-34.2 (2)	C24—C25—N26—C21	-0.4 (2)
C35—C36—C46—C41	147.5 (1)	C56—C51—C52—C53	0.0
C41—C46—C45—C44	-1.1 (2)	C50-C51-C52-C53	-179.4 (5)
C36—C46—C45—C44	176.3 (1)	C51—C52—C53—C54	0.0
C46—C45—C44—C43	-0.9 (2)	C52—C53—C54—C55	0.0
C45—C44—C43—C42	1.4 (2)	C53—C54—C55—C56	0.0
C44—C43—C42—C41	0.1 (2)	C54—C55—C56—C51	0.0
C43—C42—C41—C46	-2.2 (2)	C52—C51—C56—C55	0.0
C43—C42—C41—N4	178.2 (1)	C50—C51—C56—C55	179.4 (5)
Hydrogen-bond geometry (Å, °)			

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3…O1	0.88 (1)	2.22 (1)	2.677 (1)	112 (1)
N3—H3···O1 ⁱ	0.88 (1)	2.31 (1)	3.108 (1)	151 (1)
N2—H2…N4	0.87(1)	2.19(1)	2.644 (1)	112 (1)
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.				

